ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

ด้วยการพัฒนาอย่างรวดเร็วของเทคโนโลยีพลังงานแสงอาทิตย์จากชนิดพี (p-type) เป็นชนิดเอ็น (n-type) ความแตกต่างในการผลิตไฟฟ้าโดยผลิตภัณฑ์เทคโนโลยีเซลล์ที่ต่างกันจึงเป็นที่สนใจมากขึ้น ปัจจุบันเทคโนโลยีเซลล์ในกระแสหลักประกอบด้วย PERC, TOPCon และ HJT โดยแต่ละแบบมีข้อดีและข้อเสียเฉพาะตัวแตกต่างกันไป อย่างไรก็ตาม งานวิจัยเชิงเปรียบเทียบเกี่ยวกับการผลิตพลังงานไฟฟ้ายังไม่มีการเปรียบเทียบตลอดทั้งวงจรชีวิตอย่างเป็นระบบจากมุมมองของสภาพการณ์การใช้งานในระดับโลก

ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

เพื่อตอบโจทย์ดังกล่าวนี้ จึงมีการเก็บค่าตัวแปรหลักของเทคโนโลยีทั้งสามนี้ และมีการวัดการผลิตไฟฟ้าของโรงไฟฟ้าระดับสาธารณูปโภคที่ใช้แผงเทคโนโลยีเซลล์สามชนิดที่แตกต่างกันนี้ในช่วงวงจรชีวิตระยะเวลา 25 ปีใน 21 ประเทศและภูมิภาคที่มีสภาพแวดล้อมทางภูมิอากาศแตกต่างกันในทั่วโลก ดำเนินการโดยบริษัท ไรเซ่น เอ็นเนอร์ยี่ จำกัด (Risen Energy Co., Ltd) เพื่อสร้างผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าในระดับโลก ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

I. ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลก (ระหว่างเทคโนโลยี HJT กับ PERC/TOPCon) ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

ในระดับโลก ผลิตภัณฑ์เทคโนโลยี HJT มีการผลิตไฟฟ้าสูงกว่า โดยสูงกว่า PERC 4.37%-6.54% และสูงกว่า TOPCon 1.25%-3.33% HJT ยังมีสมรรถนะการผลิตไฟฟ้าที่ดีกว่าโดยเฉพาะในภูมิภาคที่มีอุณหภูมิสูง (อย่างเช่น ตะวันออกกลาง ออสเตรเลีย และตอนใต้ของสหรัฐฯ) โดยมีผลได้จากการผลิตไฟฟ้าสูงกว่า 6% เมื่อเทียบกับ PERC และสูงกว่า 3% เมื่อเทียบกับ TOPCon ดังแสดงในภาพ 1.1 ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

ภาพ 1.1 ผังแสดงผลได้จากการผลิตไฟฟ้าในระดับโลก ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

II. การวิเคราะห์โมดูลเชิงเทคนิค ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

จากคุณสมบัติของโมดูล ความแตกต่างของการผลิตไฟฟ้าระหว่างเทคโนโลยีเซลล์ต่างชนิดกันในแต่ละภูมิภาคในผังมีสาเหตุหลักจากสามปัจจัย ประกอบด้วย สัมประสิทธิ์อุณหภูมิ อัตราส่วนประสิทธิภาพระหว่างสองหน้า (bifacial factor) และการเสื่อมของการผลิตไฟฟ้า ซึ่งเป็นเหตุผลที่โมดูล HJT สามารถให้ผลได้จากการผลิตไฟฟ้าได้สูงกว่าและให้ผลผลิตพลังงานไฟฟ้าที่มีเสถียรภาพมากกว่าสำหรับระบบพลังงานแสงอาทิตย์ เนื่องจากสัมประสิทธิ์พลังงานที่มีเสถียรภาพสูงพิเศษ อัตราส่วนประสิทธิภาพระหว่างสองหน้าที่สูงกว่า และการกักเก็บพลังงานที่สูงกว่า ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

2.1 สัมประสิทธิ์อุณหภูมิเสถียรภาพสูงพิเศษ ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

เมื่อเปรียบเทียบกับสัมประสิทธิ์อุณหภูมิ -0.35% องศาเซลเซียสของ PERC และ -0.32% องศาเซลเซียสของ TOPCon โมดูล HJT มีสัมประสิทธิ์อุณหภูมิที่มีเสถียรภาพสูงกว่าที่ -0.24% องศาเซลเซียส ซึ่งหมายความว่าโมดูล HJT มีการเสื่อมของการผลิตไฟฟ้าต่ำกว่าเมื่อเทียบกับโมดูล PERC และ TOPCon ขณะที่อุณหภูมิในการทำงานของโมดูลเพิ่มสูงขึ้น จึงช่วยลดการสูญเสียการผลิตพลังงานไฟฟ้า นอกจากนี้ ข้อได้เปรียบด้านผลได้ในการผลิตไฟฟ้าจะเด่นชัดเป็นพิเศษในกรณีที่มีสภาพแวดล้อมการทำงานอุณหภูมิสูง ดังแสดงในภาพ 2.1 ไรเซ่น เอ็นเนอร์ยี่: ผังเปรียบเทียบผลได้จากการผลิตไฟฟ้าระดับโลกและการวิเคราะห์เชิงเทคนิคสำหรับเทคโนโลยีเซลล์ที่แตกต่างกัน

  • ที่อุณหภูมิการทำงาน 60 องศาเซลเซียส กำลังผลิตโดยเปรียบเทียบของโมดูล HJT สูงกว่าโมดูล TOPCon 2.8% และสูงกว่าโมดูล PERC 3.5%
  • ที่อุณหภูมิการทำงาน 65 องศาเซลเซียส กำลังผลิตโดยเปรียบเทียบของโมดูล HJT สูงกว่าโมดูล TOPCon 3.2% และสูงกว่าโมดูล PERC 4%

ภาพ 2.1 เส้นโค้งแสดงความสัมพันธ์ระหว่างกำลังผลิตและอุณหภูมิของ PERC/TOPCon/HJT

2.2 อัตราส่วนประสิทธิภาพระหว่างสองหน้าที่สูงกว่า

ด้วยโครงสร้างที่สมมาตรตั้งแต่ต้น เซลล์ HJT เป็นเซลล์แบบสองหน้าโดยแท้จริง และเป็นเทคโนโลยีเซลล์ที่มีอัตราส่วนประสิทธิภาพระหว่างสองหน้าสูงที่สุดในปัจจุบัน ดังแสดงในภาพ 2.2 ภายใต้สภาพการณ์การใช้งานที่เหมือนกัน ยิ่งอัตราส่วนประสิทธิภาพระหว่างสองหน้าสูง ผลได้จากการผลิตไฟฟ้าที่ด้านหลังก็จะยิ่งสูง อัตราส่วนประสิทธิภาพระหว่างสองหน้าของโมดูล HJT อยู่ที่ราว 85% ซึ่งสูงกว่าโมดูล PERC ราว 15% และสูงกว่าโมดูล TOPCon ราว 5% ดังแสดงในตาราง 2.1

ภาพ 2.2 โครงสร้างของเซลล์ HJT

ตาราง 2.1 อัตราส่วนประสิทธิภาพระหว่างสองหน้าของโมดูล PERC/TOPCon/HJT

ในสภาพการณ์การใช้งานในโรงไฟฟ้าแบบติดตั้งบนพื้นดินระดับสาธารณูปโภคเหมือนกัน อัตราส่วนประสิทธิภาพระหว่างสองหน้าที่สูงกว่าของโมดูล HJT ทำให้มีผลได้จากการผลิตไฟฟ้าสูง เมื่อเทียบกับโมดูล PERC และ TOPCon

2.3 การกักเก็บพลังงานสูงกว่า

จากเส้นโค้งการเสื่อมของการผลิตไฟฟ้าของเทคโนโลยีทั้งสามชนิดที่แตกต่างกัน เห็นได้ชัดเจนว่าภายในสิ้นสุดปีที่ 25 อัตราการกักเก็บพลังงานไฟฟ้าของโมดูล HJT อยู่ที่ 92% ขณะที่โมดูล PERC อยู่ที่ 87.2% และโมดูล TOPCon อยู่ที่ 89.4% หมายความว่าผลิตภัณฑ์ HJT มีการกักเก็บพลังงานที่ผลิตได้ดีที่สุดในตลอดช่วงชีวิตของโรงไฟฟ้าระดับสาธารณูปโภค ซึ่งสามารถนำไปสู่การผลิตพลังงานไฟฟ้าที่มีเสถียรภาพมากกว่าและสูงกว่าโดยเปรียบเทียบ ดังแสดงในภาพ 2.3

เนื่องจากมีการคำนวณผลลัพธ์ข้างต้นโดยมีการเสื่อมปีแรกที่ 2% ในปัจจุบัน ข้อได้เปรียบด้านผลได้จากการผลิตไฟฟ้าจะยิ่งเพิ่มมากขึ้นในอนาคต เนื่องจากการพัฒนาเทคโนโลยีเซลล์และการห่อหุ้มโมดูลและการพัฒนาวัสดุทำให้ผลิตภัณฑ์ HJT เสื่อมน้อยลงได้ในปีแรก

ภาพ 2.3 การรับประกันผลิตภัณฑ์ของโมดูล PERC/TOPCon/HJT

ข้างต้นนี้คือการวิเคราะห์โดยคร่าวของสมรรถนะของเซลล์และโมดูล HJT อย่างไรก็ตาม สิ่งใดเป็นปัจจัยหลักที่ส่งผลต่อการผลิตไฟฟ้าของโมดูล ผลกระทบนั้นมีนัยสำคัญเพียงใด ในแง่นี้ ไรเซ่น เอ็นเนอร์ยี่ พยายามที่จะวิเคราะห์โดยละเอียดเพิ่มเติมโดยใช้โปรแกรมพีวีซิสต์ (PVSYST)

III. การวิเคราะห์โดยใช้โปรแกรมพีวีซิสต์

ในแง่ของปัจจัยที่มีอิทธิพลต่อการผลิตไฟฟ้า ได้มีการคัดเลือกสภาพการณ์การใช้งานในอุณหภูมิสูงและต่ำโดยทั่วไปสำหรับการวิเคราะห์ตามลำดับ

3.1 สภาพการณ์การใช้งานในอุณหภูมิต่ำ

เมืองฮาร์บินในจีนได้รับเลือกเป็นตัวอย่างโดยทั่วไปของสภาพการณ์การใช้งานในอุณหภูมิต่ำ ซึ่งตั้งอยู่ใกล้ 45.9 องศาเหนือโดยมีอุณหภูมิเฉลี่ยต่อปี 4.7 องศาเซลเซียสและมีความเข้มของรังสีดวงอาทิตย์แนวระนาบ 1347 กิโลวัตต์ชั่วโมงต่อตารางเมตร โรงไฟฟ้าออกแบบให้มีอัตราส่วนกระแสตรง/กระแสสลับ (DC/AC ratio) ที่ 1.25 และมีกำลังผลิตติดตั้ง 4 เมกะวัตต์ (มีความแตกต่างเล็กน้อยในดีไซน์จริง) โดยใช้ตัวยึดแบบอยู่กับที่พร้อมมุมเอียงที่ดีที่สุดและอินเวอร์เตอร์แบบสตริง (string inverter) ที่เหมาะสม ในปีที่ 25 ผลได้จากการผลิตไฟฟ้าของ TOPCon สูงกว่า 3.94% และผลได้จากการผลิตไฟฟ้าของ HJT สูงกว่านั้นขึ้นไปอีก โดยสูงกว่า 7.73% เมื่อเทียบกับการผลิตไฟฟ้าของ PERC ดังแสดงในตาราง 3.1

ตาราง 3.1 การเปรียบเทียบผลได้จากการผลิตไฟฟ้าของ PERC/TOPCon/HJT

จากการเปรียบเทียบการสูญเสีย ปัจจัยสำคัญที่สุดที่มีผลต่อการผลิตไฟฟ้าในการใช้งานในอุณหภูมิต่ำคือการเสื่อมของการผลิตไฟฟ้า เมื่อสิ้นสุดปีที่ 25 การเสื่อมของการผลิตไฟฟ้าอยู่ที่ 12.86% (1.6% + 11.26%) สำหรับโมดูล PERC, 10.6% (0.6% + 10%) สำหรับโมดูล TOPCon และ 7.87% (1.6% + 6.27%) สำหรับโมดูล HJT ดูภาพ 3.1

ภาพ 3.1 การเปรียบเทียบการสูญเสียหลักของ PERC/TOPCon/HJT ในอุณหภูมิต่ำ

3.2 สภาพการณ์การใช้งานในอุณหภูมิสูง

เมืองอาบูดาบีในตะวันออกกลางได้รับเลือกเป็นตัวอย่างโดยทั่วไปของสภาพการณ์การใช้งานในอุณหภูมิสูง ซึ่งตั้งอยู่ใกล้ 24.4 องศาเหนือโดยมีอุณหภูมิเฉลี่ยต่อปี 28.5 องศาเซลเซียสและมีความเข้มของรังสีดวงอาทิตย์แนวระนาบ 2015.1 กิโลวัตต์ชั่วโมงต่อตารางเมตร โรงไฟฟ้าออกแบบให้มีอัตราส่วนกระแสตรง/กระแสสลับที่ 1.05 และมีกำลังผลิตติดตั้ง 4 เมกะวัตต์ (มีความแตกต่างเล็กน้อยในดีไซน์จริง) โดยใช้มุมเอียงที่ดีที่สุดสำหรับตัวยึดแบบอยู่กับที่และอินเวอร์เตอร์แบบสตริงที่เหมาะสม ในปีที่ 25 ผลได้จากการผลิตไฟฟ้าของ TOPCon สูงกว่า 4.52% และผลได้จากการผลิตไฟฟ้าของ HJT สูงกว่านั้นขึ้นไปอีก โดยสูงกว่า 9.67% เมื่อเทียบกับการผลิตไฟฟ้าของ PERC ดังแสดงในตาราง 3.2

ตาราง 3.2 การเปรียบเทียบผลได้จากการผลิตไฟฟ้าของ PERC/TOPCon/HJT

จากกราฟเปรียบเทียบการสูญเสีย นอกจากการเสื่อมของการผลิตไฟฟ้า การสูญเสียของอุณหภูมิการทำงานเป็นอีกปัจจัยสำคัญที่มีผลต่อการผลิตไฟฟ้าในสภาพการณ์อุณหภูมิสูง เมื่อสิ้นสุดปีที่ 25 การเสื่อมของการผลิตไฟฟ้าของโมดูล PERC อยู่ที่ 12.86% (1.6% + 11.26%) ขณะที่ของโมดูล TOPCon อยู่ที่ 10.6% (0.6% + 10%) และของโมดูล HJT อยู่ที่ 7.87% (1.6% + 6.27%) การสูญเสียอุณหภูมิการทำงานของโมดูล PERC อยู่ที่ 8.31% ขณะที่ของโมดูล TOPCon อยู่ที่ 7.26% และของโมดูล HJT อยู่ที่ 5.81% ดังแสดงในภาพ 3.2

ภาพ 3.2 การเปรียบเทียบการสูญเสียหลักของ PERC/TOPCon/HJT ในอุณหภูมิสูง

การวิเคราะห์ข้างต้นชี้ว่าในสภาพการณ์การใช้งานอุณหภูมิต่ำ การเสื่อมของการผลิตไฟฟ้าเป็นหนึ่งในปัจจัยหลักที่มีผลต่อการผลิตไฟฟ้าของผลิตภัณฑ์ และในสภาพการณ์การใช้งานอุณหภูมิสูง อุณหภูมิการทำงานเป็นอีกปัจจัยสำคัญ เนื่องจากโมดูล HJT มีสัมประสิทธิ์อุณหภูมิที่มีเสถียรภาพสูงพิเศษ มีอัตราส่วนประสิทธิภาพระหว่างสองหน้าที่สูงกว่า และมีการกักเก็บพลังงานที่สูงกว่า ข้อได้เปรียบในแง่ของผลได้จากการผลิตไฟฟ้าของ HJT มีอยู่อย่างชัดเจนในพื้นที่อุณหภูมิสูง ขณะที่ในพื้นที่อุณหภูมิต่ำ HJT แสดงถึงผลได้จากการผลิตไฟฟ้าที่สูงโดยเปรียบเทียบเช่นกัน ซึ่งจะทำให้ระบบผลิตไฟฟ้าพลังงานแสงอาทิตย์มีผลได้จากการผลิตไฟฟ้าที่สูงกว่าและมีผลผลิตพลังงานไฟฟ้าที่มีเสถียรภาพมากกว่า

รูปภาพ - https://mma.prnewswire.com/media/1927736/1.jpg

รูปภาพ - https://mma.prnewswire.com/media/1927737/2.jpg

รูปภาพ - https://mma.prnewswire.com/media/1927738/3.jpg

รูปภาพ - https://mma.prnewswire.com/media/1927739/4.jpg

รูปภาพ - https://mma.prnewswire.com/media/1927740/5.jpg

รูปภาพ - https://mma.prnewswire.com/media/1927741/6.jpg

รูปภาพ - https://mma.prnewswire.com/media/1927742/7.jpg

รูปภาพ - https://mma.prnewswire.com/media/1927743/8.jpg

รูปภาพ - https://mma.prnewswire.com/media/1927744/9.jpg


ข่าวไรเซ่น เอ็นเนอร์ยี่+พลังงานแสงอาทิตย์วันนี้

ไรเซ่น เอ็นเนอร์ยี่ ผงาดคว้ารางวัลโมดูลดีเด่นหนึ่งเดียว ในเวทีพีวี แม็กกาซีน อวอร์ดส์ ประจำปี 2566

ไรเซ่น เอ็นเนอร์ยี่ (Risen Energy) ผู้ผลิตเซลล์แสงอาทิตย์ (PV) ชั้นนำระดับโลก ผงาดขึ้นเป็นผู้ชนะเหนือผลงานอื่น ๆ ที่มีผู้ส่งเข้ามากว่า 200 รายการจากกว่า 39 ประเทศทั่วโลก โดยไรเซ่น เอ็นเนอร์ยี่ คว้ารางวัลโมดูลดีเด่นเพียงหนึ่งเดียว นับเป็นเครื่องพิสูจน์ที่ชัดเจนถึงความทุ่มเทอันแน่วแน่สู่ความเป็นเลิศ งานพีวี แม็กกาซีน อวอร์ดส์ (PV Magazine Awards) ประจำปี 2566 ยกย่องความก้าวหน้าและเชิดชูนวัตกรรมระดับแนวหน้าในอุตสาหกรรมพลังงานแสงอาทิตย์ โดยมีคณะกรรมการผู้ทรงคุณวุฒิที่ประกอบด้วยผู้เชี่ยวชาญอิสระ 19

ไรเซ่น เอ็นเนอร์ยี่ สร้างสถิติใหม่ด้านค่าการปล่อยคาร์บอน โดยโมดูลแสงอาทิตย์ไฮเปอร์ไอออนชนิด HJT ได้รับการรับรองโดยเซอร์ทิโซลิส

ไรเซ่น เอ็นเนอร์ยี่ (Risen Energy) ผู้ผลิตผลิตภัณฑ์เซลล์แสงอาทิตย์ (PV) สมรรถนะสูงชั้นนำระดับโลก ยินดีที่ได้ประกาศว่าบริษัทได้รับการรับรองสัญชาติฝรั่ง...

ไรเซ่น เอ็นเนอร์ยี่ ตอกย้ำความแข็งแกร่ง คว้าตำแหน่ง "ผู้ทำผลงานยอดเยี่ยม" จากพีเวล 3 ปีซ้อน

บริษัท ไรเซ่น เอ็นเนอร์ยี่ จำกัด (Risen Energy Co., Ltd) ผู้ผลิตเซลล์แสงอาทิตย์ประสิทธิภาพสูงระดับเทียร์ 1 เปิดเผยว่า บริษัทได้รับตำแหน่ง "ผู้ทำผลงานยอดเยี่ยม" (Top Performer) เป็นปีที่ 3 ติดต่อกัน จากการให้คะ...

ไรเซ่น เอ็นเนอร์ยี่ เผยแพร่รายงานประจำปี 2565 ปลื้มรายได้โต 56.05% เมื่อเทียบเป็นรายปี

ไรเซ่น เอ็นเนอร์ยี่ (Risen Energy Co., Ltd.) บริษัทชั้นนำระดับโลกผู้ผลิตเซลล์แสงอาทิตย์สมรรถนะสูง ได้เผยแพร่รายงานประจำปี 2565 เมื่อวันที่ 21 เมษายนที่ผ่านมา ในปี 2565 ไรเซ่น เอ็นเนอร์ยี่ มีรายได้รวม 2.938...

ไรเซ่น เอ็นเนอร์ยี่ สร้างสถิติใหม่! โมดูลแสงอาทิตย์ไฮเปอร์ไอออนแบบ HJT มีกำลังผลิตแตะ 741.456W ด้วยประสิทธิภาพ 23.89%

ไรเซ่น เอ็นเนอร์ยี่ (Risen Energy) ประกาศว่า โมดูลเซลล์แสงอาทิตย์แบบเฮเทอโรจังก์ชัน (heterojunction หรือ HJT) ในไลน์ไฮเปอร์ไอออน (Hyper-ion) ทำกำลังไฟฟ้าสูงสุดได้ 741.456W โดยที่...

ไรเซ่น เอ็นเนอร์ยี่ เผยโมดูล HJT ขนาด 700Wp+ เข้าสู่ยุคของการผลิตในปริมาณมาก

ไรเซ่น เอ็นเนอร์ยี่ (Risen Energy) ผู้ผลิตโมดูลเซลล์แสงอาทิตย์ชั้นนำในประเทศจีน ประกาศว่า บริษัทกำลังเริ่มผลิตไฮเปอร์ไอออน (Hyper-ion) ซึ่งเป็นโมดูลเซลล์แสงอาทิตย์แบบเฮเทอโรจังก์ชัน (heterojunction หรือ HJT) ในปริมาณมาก ...

โซลาร์เซลล์ของ "ไรเซ่น เอ็นเนอร์ยี่" ผ่านการรับรองจากสำนักมาตรฐานอินเดีย

บริษัท ไรเซ่น เอ็นเนอร์ยี่ จำกัด (Risen Energy Co., Ltd.) ผู้ผลิตเซลล์แสงอาทิตย์ประสิทธิภาพสูงชั้นนำระดับโลก ได้รับการรับรองจากสำนักมาตรฐานอินเดีย หรือ บีไอเอส (Bureau of Indian Standards หรือ BIS) สำหรับโมดูลเซลล์...

ไรเซ่น เอ็นเนอร์ยี่ นำเสนอยุคใหม่แห่งพลังงานแสงอาทิตย์ ด้วยโมดูลแสงอาทิตย์ไฮเปอร์ไอออน ในงานประชุมอุตสาหกรรมพลังงานแสงอาทิตย์จีน ประจำปี 2565

ไรเซ่น เอ็นเนอร์ยี่ (Risen Energy) ผู้ผลิตโมดูลพลังงานแสงอาทิตย์ชั้นนำในจีน ได้ร่วมนำเสนอวิสัยทัศน์และมุมมองเกี่ยวกับนวัตกรรมสำคัญที่กำหนดอนาคตของพลังงานหมุน...